Zum Inhalt springen

Korrelation und Kausalität – einfach erklärt!

Die Korrelation bezeichnet das Verhältnis zwischen zwei statistischen Variablen. Die beiden Variablen sind dann voneinander abhängig und ändern sich gemeinsam. Eine positive Korrelation zweier Variablen bedeutet also, dass eine Steigerung von A auch zu einer Steigerung von B führt. Die Abhängigkeit ist dabei ungerichtet. Es gilt also auch im umgekehrten Fall und eine Steigerung der Variable B verändert auch die Steigung von A im gleichen Umfang.

Eine Kausalität hingegen beschreibt einen Ursache-Wirkungs-Zusammenhang zwischen zwei Variablen. Eine Kausalität zwischen A und B bedeutet also, dass die Steigerung in A auch die Ursache für die Erhöhung von B ist. 

Was ist der Unterschied zwischen Korrelation und Kausalität?

Der Unterschied wird an einem einfachen Beispiel schnell deutlich. Eine Studie könnte sehr wahrscheinlich einen positiven Zusammenhang zwischen dem Hautkrebsrisiko eines Menschen und der Anzahl an Freibadbesuchen finden. Wenn eine Person also häufig das Freibad besucht, dann erhöht sich auch ihr Risiko an Hautkrebs zu erkranken. Eine eindeutige positive Abhängigkeit. Doch besteht auch eine Kausalität zwischen Freibadbesuchen und Hautkrebs? Wahrscheinlich eher nicht, denn das würde bedeuten, dass alleinig der Freibadbesuche die Ursache für das erhöhte Hautkrebsrisiko sind.

Vielmehr ist es so, dass Menschen, die sich häufiger im Freibad aufhalten auch deutlich mehr Sonneneinstrahlung ausgesetzt sind. Wenn dann nicht ausreichend mit Sonnencreme oder ähnlichem vorgesorgt wird, kann es zu mehr Sonnenbränden kommen und diese erhöhen das Hautkrebsrisiko. Man sieht deutlich, dass die Korrelation zwischen Freibadbesuchen und Hautkrebsrisiko keine Kausalität sind. 

Das Bild zeigt ein Kartoon mit einem Pool und einem Mädchen mit Hautkrebs.
Beispiel eines Zusammenhangs zwischen Freibadbesuchen und Hautkrebs

Eine Vielzahl von kuriosen Zusammenhängen, die sehr wahrscheinlich keine Kausalität aufzeigen, finden sich auf tylervigen.com.

Das Liniendiagramm zeigt zwei Linien, die eine Korrelation darstellt. Der Margarinekonsum und die Scheidungsrate nehmen in dem Zeitraum beide proportional ab.
Zusammenhang zwischen Scheidungsrate und Margarinenkonsum in Maine (USA) | Foto: tylervigen.com

Es besteht beispielsweise eine sehr hohe Abhängigkeit zwischen der Scheidungsrate im amerikanischen Bundesstaat Maine und dem Pro-Kopf-Konsum von Margarine. Ob es sich dabei auch um eine Kausalität handelt, kann man bezweifeln.

Welche Arten der Korrelation gibt es?

Im Allgemeinen unterscheidet man zwei Arten von Zusammenhängen, die unterschieden werden können:

  1. Linear oder Nicht-Linear: Die Abhängigkeiten sind linear, wenn die Änderungen in der Variablen A immer eine Änderung mit einem konstanten Faktor bei der Variablen B auslöst. Wenn dies nicht der Fall ist, spricht man von einer nicht-linearen Abhängigkeit.
  2. Positiv oder Negativ: Wenn die Steigerung der Variablen A zu einer Steigerung der Variablen B führt, dann ist eine positive Korrelation gegeben. Wenn hingegen die Steigerung von A zu einer Abnahme von B führt, dann ist die Abhängigkeit negativ.
Das Bild zeigt die verschiedenen Arten der Korrelation.
Verschiedene Arten der Korrelation

Was ist der Korrelationskoeffizient?

Der Korrelationskoeffizient gibt an, wie stark die Abhängigkeit zwischen den beiden Variablen ausgeprägt ist. Im Beispiel von tylervigen.com ist diese Korrelation mit 99,26 % sehr stark ausgeprägt und bedeutet, dass die beiden Variablen sich nahezu 1 zu 1 bewegen, also eine Steigerung des Magarinekonsums um 10 % führt auch zu einer Steigerung der Scheidungsrate um 10 %.  Der Korrelationskoeffizient kann dabei auch negativer Werte annehmen.

Ein Korrelationskoeffizient kleiner 0 beschreibt die Antikorrelation und sagt aus, dass sich die beiden Variablen gegensätzlich verhalten. Eine negative Abhängigkeit besteht beispielsweise zwischen dem aktuellen Alter und der verbleibenden Lebenserwartung älter man wird, desto geringer ist die noch verbleibende Lebenserwartung eines Menschen. 

Wie weist man eine Kausalität nach?

Um eine Kausalität verlässlich nachweisen zu können werden wissenschaftliche Experimente durchgeführt. Darin versucht man Menschen oder Versuchsobjekte in Gruppen aufzuteilen (wie das genau passiert kannst du in unserem Beitrag zu Sampeln nachlesen), sodass im Optimalfall alle Merkmale der Teilnehmer ähnlich oder identisch sind bis auf das Merkmal, das als Ursache vermutet wird.

Für den „Hautkrebs-Freibad-Fall“ bedeutet das konkret, dass versucht wird zwei Gruppen zu bilden in denen beide Teilnehmerkreise in wichtigen Merkmalen, wie Alter, Geschlecht, körperliche Gesundheit und auch ausgesetzte Sonneneinstrahlung pro Woche ähnliche oder am besten sogar gleiche Ausprägungen aufweisen. Nun wird untersucht, ob die Freibadbesuche der einen Gruppe (Merke: die ausgesetzte Sonneneinstrahlung muss konstant bleiben),  das Hautkrebsrisiko im Vergleich zu der Gruppe, die nicht ins Freibad gegangen ist, verändert. Wenn diese Veränderung ein gewisses Level übersteigt, kann man von einer Kausalität reden.

Das solltest Du mitnehmen

  • Nur in sehr wenigen Fällen bedeutet eine Korrelation auch eine Kausalität.
  • Korrelation bedeutet, dass sich zwei Variablen immer gemeinsam ändern. Kausalität hingegen bedeutet, dass die Änderung einer Variablen die Ursache ist für die Änderung der anderen.
  • Der Korrelationskoeffizient gibt die Ausprägungsstärke der Abhängigkeit an. Er kann sowohl positiv als auch negativ sein. Bei einem negativen Koeffizienten spricht man von Antikorrelation.
  • Um eine Kausalität nachzuweisen benötigt man aufwendige Experimente. 

Andere Beiträge zum Thema Korrelation und Kausalität

  • Ausführliche Definitionen zu den Begrifflichkeiten findest Du hier.
  • Ein anschauliches Video der Freunde von Studyflix ist hier verlinkt.
close
Das Logo zeigt einen weißen Hintergrund den Namen "Data Basecamp" mit blauer Schrift. Im rechten unteren Eck wird eine Bergsilhouette in Blau gezeigt.

Verpass keine neuen Beiträge!

Wir versenden keinen Spam! Lies die Details gerne in unserer Datenschutzrichtlinie nach.

Cookie Consent mit Real Cookie Banner